How do you solve 3x^2 - y^2 =1 1 and x^2 + 2y = 2 using substitution?

1 Answer
May 3, 2016

x^2 = 2 - 2y

x = sqrt(2 - 2y)

3(sqrt(2 - 2y))^2 - y^2 = 11

3(2 - 2y) - y^2 = 11

6 - 6y - y^2 = 11

0 = y^2 + 6y + 5

0 = (y + 1)(y + 5)

y = -1 and -5

x^2 + 2(-1) = 2 or x^2 + 2(-5) = 2

x^2 = 4 or x^2 = 12

x = 2 or x = 2sqrt(3)

Your solution sets are {2, -1} and {2sqrt(3), -5}.

Hopefully this helps!