How do you solve 4(.3)^x = 1.2^(x+2)?

2 Answers
Jun 21, 2016

(ln 5 - ln 3)/ (ln 2)

Explanation:

take logs

ln ( 4 (0.3)^x) = ln(1.2^{x+2})
ln ( 4 ) + ln (0.3^x) = ln(1.2^{x+2})
ln ( 4 ) + x ln (0.3) = (x+2) ln(1.2)
x (ln (0.3) - ln(1.2) )= 2 ln(1.2) - ln ( 4 )
x ln (0.3 / 1.2 )= ln(1.2^2 / 4)
x ln (1/4 )= ln(9/25)
x = ln(9/25) / ln (1/4 ) = (ln 9 - ln 25)/(ln 1 - ln 4)
= (2 ln 3 - 2 ln 5)/(0 - 2 ln 2)
= (ln 5 - ln 3)/ (ln 2)

Jun 21, 2016

x = 0.736966

Explanation:

4(.3)^x = 1.2^(x+2) = (4 xx .3)^{x+2} = 4^{x+2}xx(.3)^{x+2}

then

4(.3)^x = 4^{x+2}xx(.3)^{x+2} = 4^2xx(0.3)^2xx4^x xx(.3)^x

elliminating (.3)^x in both sides

4 = 4^2xx(0.3)^2xx4^x->4^x=1/(4 xx (0.3)^2)

and finally

x = -log_e(4 xx (0.3)^2)/log_e 4 = 0.736966