How do you solve 4^x=sqrt(5^(x+2))4x=5x+2?

1 Answer
Nov 17, 2016

x = (2log(5))/(4log(2)-log(5))x=2log(5)4log(2)log(5)

Explanation:

Squaring both sides

4^(2x)=5^2 5^x42x=525x or
16^x=5^x 5^216x=5x52 or
(16/5)^x=5^2(165)x=52 now applying loglog to both sidexs
x(log(16)-log(5))=2log(5)x(log(16)log(5))=2log(5) then
x = (2log(5))/(4log(2)-log(5))x=2log(5)4log(2)log(5)