How do you solve 430= x ^ { \frac { 5} { 3} } + 17?

2 Answers
May 3, 2017

x~~37.12" to 2 decimal places"

Explanation:

"using the "color(blue)"laws of logarithms"

• logx^n=nlogx

• log_b x=nhArrx=b^n

430=x^(5/3)+17

rArrx^(5/3)=413

"take the ln (natural log.) of both sided"

rArrlnx^(5/3)=ln413rarr" using above law gives"

5/3lnx=ln413

rArrlnx=3/5ln413rarr"using above law"

rArrx=e^((3/5ln413))~~37.12" to 2 decimal places"

May 3, 2017

x=413^(3/5) = root(5)413^3

Explanation:

x^(5/3)+17 = 430

Subtract 17 from both sides.

x^(5/3) = 413

Raise both sides to the 3/5 power

x=413^(3/5)