How do you solve 4sin^2 theta - 13sin theta +3 = 0?

1 Answer
Apr 30, 2015

In this way:

let t=sinx,

so:

4t^2-13t+3=0

Delta=b^2-4ac=169-48=121=11^2

t_(1,2)=(-b+-sqrtDelta)/(2a)=(13+-11)/8rArr

t_1=(13+11)/8=3

t_2=(13-11)/8=2/8=1/4.

And now:

sinx=3 impossible because the range of the sinus function is [-1,1],

sinx=1/4rArr

x=arcsin(1/4)+2kpi

x=pi-arcsin(1/4)+2kpi.

This is because the solutions of an equation in the variable sinus has (when it has!) 2 supplementary solutions.