How do you solve 4sin(x+pi)=2cos(x+pi/2)+24sin(x+π)=2cos(x+π2)+2?

1 Answer
Sep 14, 2016

x=2npi-pi/2x=2nππ2

Explanation:

We can solve the equation 4sin(x+pi)=2cos(x+pi/2)+24sin(x+π)=2cos(x+π2)+2,

by using the identities sin(x+pi)=-sinxsin(x+π)=sinx and cos(x+pi/2)=-sinxcos(x+π2)=sinx

Hence 4sin(x+pi)=2cos(x+pi/2)+24sin(x+π)=2cos(x+π2)+2 can be written as

-4sinx=-2sinx+24sinx=2sinx+2 or

-4sinx+2sinx=24sinx+2sinx=2 or

-2sinx=22sinx=2 or

sinx=-1=son(-pi/2)sinx=1=son(π2)

Hence x=2npi-pi/2x=2nππ2