How do you solve 4tanx=2sec^2x for 0<=x<=2pi?

1 Answer
Oct 20, 2016

x=pi/4 and x=(5pi)/4

Explanation:

(4tanx)/2=(2sec^2x)/2

2tanx=sec^2x

Use the Pythagorean identity sec^2x=tan^2x+1

2tanx=tan^2x+1

0=tan^2x-2tanx+1color(white)(aaa)Subtract 2tanx from both sides

0=(tanx-1)(tanx-1)color(white)(aaa)Factor

tanx-1=0color(white)(aaa)Set the factors equal to zero

tanx=1color(white)(aaaaa)Add 1 to both sides

For 0<=x<=2pi, tanx=1 where sinx=cosx
(because tanx=sinx/cosx).

Use the unit circle to find angles where
sinx=cosx.

tanx=1 at x=pi/4 and x=(5pi)/4