How do you solve 4x+3y=-22 and -8x+y=58 using substitution?

1 Answer
May 28, 2018

x = 193/22 and y = 1410/11

Explanation:

4x + 3y = -22 - - - eqn1

-8x + y = 58 - - - eqn2

By Substitution Method..

From eqn2

-8x + y = 58 - - - eqn2

Making y the subject formula..

-8x + y = 58

Add both sides by 8x

-8x + y + 8x= 58 + 8x

y = 58 + 8x - - - eqn3

Substituting eqn3 into eqn1

4x + 3y = -22 - - - eqn1

4x + 3(58 + 8x) = -22

4x + 174 + 24x = -22

4x + 24x + 171 = -22

28x + 171 = -22

28x = -22 - 171

28x = 193

x = 193/22

Substituting the value of x into eqn3

y = 58 + 8x - - - eqn3

y = 58 + 8(193/22)

y = 58 + 1544/22

y = (1276 + 1544)/22

y = 2820/22

y = 1410/11

Therefore;

x = 193/22 and y = 1410/11