How do you solve 5^(5y-2)=2^(2y+1)?

1 Answer
Oct 16, 2016

5^(5y - 2) = 2^(2y + 1)

ln(5^(5y - 2)) = ln(2^(2y + 1))

(5y - 2)ln5 = (2y + 1)ln2

5yln5 - 2ln5 = 2yln2 + ln2

5yln5 - 2yln2 = ln2 + 2ln5

y(5ln5 - 2ln2) = ln2 + 2ln5

Apply the rules alnn = lnn^a, lna - lab = ln(a/b) and lna + lnb = ln(a xx b) to simplify.

y(ln781.25) = ln50

y = ln50/ln781.25

y = 0.59

Hopefully this helps!