How do you solve 5^(x-1)=3x?

1 Answer
Jul 31, 2017

See below.

Explanation:

Making e^lambda = 5 we have

5^-1 e^(lambda x)= 3x or

5^-1/3=x e^(-lambda x) = 1/lambda(lambda x)e^(-lambda x) then

(5^-1lambda)/3 = -(-lambdax)e^(-lambda x) and now using the Lambert function

https://en.wikipedia.org/wiki/Lambert_W_function

applying Y=Xe^X hArr X = W(Y) we have

-lambda x = W((-5^-1lambda)/3) or

x = -1/lambda W((-5^-1lambda)/3) with lambda = log_e 5 or

x = -(W(-log_e5/15))/log_e5

The Lambert function furnishes two solutions

x = {0.0752499466729842,2.161545847967751}