How do you solve 5^(x-2) = 3^(3x+2)?

1 Answer
Dec 31, 2015

I found -3.2116

Explanation:

We can take the natural log of both sides:
ln(5)^(x-2)=ln(3)^(3x+2)
We use the property of the logs:
logx^y=ylogx
(x-2)ln(5)=(3x+2)ln(3)
Rearrange:
xln5-2ln5=3xln3+2ln3
x(ln5-3ln3)=2ln5+2ln3
x=(2ln5+2ln3)/(ln5-3ln3)=-3.2116