How do you solve 5sin^2x + 3cos^2x = 45sin2x+3cos2x=4?

1 Answer

The solutions are x=pi/4 ,x=(3pi)/4,x=(5pi)/4,x=(7pi)/4x=π4,x=3π4,x=5π4,x=7π4

Explanation:

We know that sin^2x+cos^2x=1sin2x+cos2x=1 hence cos^2x=1-sin^2xcos2x=1sin2x

thus

5sin^2x+3(1-sin^2x)=4=>5sin^2x+3-3sin^2x=4=> 2sin^2x=1=>sinx=+-sqrt2/2=>x=pi/4 ,x=(3pi)/4,x=(5pi)/4,x=(7pi)/45sin2x+3(1sin2x)=45sin2x+33sin2x=42sin2x=1sinx=±22x=π4,x=3π4,x=5π4,x=7π4