How do you solve 5sin2x-6sinx=0 for 0<=x<=2pi?

1 Answer
Nov 6, 2016

Solutions:
x=0, x=pi,x=2pi,xapprox.927295,xapprox5.35589

Explanation:

5sin2x-6sinx=0

First, use the double angle identity to simplify the sin2x:
5(2sinxcosx)-6sinx=0

From here, we'll simplify and factor:
10sinxcosx-6sinx=0
(2)(sinx)(5cosx-3)=0

Now set each factor (that includes x) equal to zero:
sinx=0
x=0
x=pi
x=2pi

5cosx-3=0
xapprox.927295
xapprox5.35589