How do you solve 6^(x-2)=4^x?

2 Answers
Nov 8, 2016

x=8.838

Explanation:

In the equation 6^(x-2)=4^x, taking log on both sides we get

(x-2)log6=xlog4

or xlog6-2log6=xlog4

or xlog6-xlog4=2log6

or x=(2log6)/(log6-log4)

= (2xx0.7782)/(0.7782-0.6021)

= 1.5564/0.1761=8.838

Nov 8, 2016

x=8.838

Explanation:

6^(x-2)=4^x

Log both sides.

log 6^(x-2)=log 4^x

Recall the log rule logx^a = alogx

(x-2) log6 = xlog4

Distribute the log6

xlog6-2log6=xlog4

Subtract xlog6 from both sides.

-2log6 = xlog4 - xlog6

Factor out the x on the right side

-2log6=x(log4-log6)

Recall the log rule loga - logb= log (a/b)

-2log6=xlog(4/6)

-2log6=xlog(2/3)

Divide both sides by log (2/3)

frac{-2log6}{log (2/3)}=x

Use a calculator....

x=8.838