How do you solve 6cos(2x) + 3 = 06cos(2x)+3=0?

1 Answer
May 15, 2015

On the trig unit circle:

cos (2x) = -3/6 = -1/2 -> 2x = (2pi)/3 and 2x = (4pi)/3cos(2x)=36=122x=2π3and2x=4π3

Answer:
Within period (0, 2pi): x = pi/6 and x = 4pi/6 = (2pi)/3(0,2π):x=π6andx=4π6=2π3

Check:

x = pi/6 -> 2x = pi/3 ; cos 2x = 1/2 -> f(x) = -3 + 3 = 0x=π62x=π3;cos2x=12f(x)=3+3=0 OK

x = 2pi/3 -> 2x = 4pi/3 -> f(x) = 6(-1/2) + 3 = 0x=2π32x=4π3f(x)=6(12)+3=0. OK