How do you solve 7cotx-sqrt3=4cotx for 0<=x<=2pi?

1 Answer
Aug 6, 2016

The Soln. Set. ={pi/3, 4pi/3} sub [0,2pi].

Explanation:

7cotx-sqrt3=4cotx rArr 3cotx=sqrt3 rArr cotx=1/sqrt3.

rArr tanx=sqrt3=tan(pi/3)

:. x=pi/3 is a soln.

Now, the Principal Period of tan function is pi, i.e., to say,

tantheta=tan(theta+pi), so, pi/3+pi=4pi/3 is also soln.

So, the Soln. Set. ={pi/3, 4pi/3} sub [0,2pi].