How do you solve 8(sin x)(cos x)(cos^2 x - sin^2 x) = 18(sinx)(cosx)(cos2xsin2x)=1?

1 Answer
Jun 18, 2016

x=(npi)/4+(-1)^n*pi/24x=nπ4+(1)nπ24

Explanation:

8(sin x)(cos x)(cos^2 x - sin^2 x) = 18(sinx)(cosx)(cos2xsin2x)=1

Applying identities 2sinx cosx =sin2x and (cos^2 x - sin^2 x)=cos2x2sinxcosx=sin2xand(cos2xsin2x)=cos2x we get

4sin2xcos2x=14sin2xcos2x=1

=>2sin4x=12sin4x=1

=>sin4x=1/2= sin(pi/6)sin4x=12=sin(π6)

=>4x=npi+(-1)^n*pi/64x=nπ+(1)nπ6

=>x=(npi)/4+(-1)^n*pi/24x=nπ4+(1)nπ24