We have: 8^(x) = 4 times 12^(2 x)8x=4×122x
Let's apply the natural logarithm to both sides of the equation:
=> ln(8^(x)) = ln(4 times 12^(2 x))⇒ln(8x)=ln(4×122x)
Using the laws of logarithms:
=> x ln(8) = ln(4) + 2 x ln(12)⇒xln(8)=ln(4)+2xln(12)
Let's express some numbers in terms of 22:
=> x ln(2^(3)) = ln(2^(2)) + 2 x ln(12)⇒xln(23)=ln(22)+2xln(12)
=> 3 x ln(2) = 2 ln(2) + 2 x ln(12)⇒3xln(2)=2ln(2)+2xln(12)
=> 3 x ln(2) - 2 x ln(12) = 2 ln(2)⇒3xln(2)−2xln(12)=2ln(2)
=> x (3 ln (2) - 2 ln(12)) = 2 ln(2)⇒x(3ln(2)−2ln(12))=2ln(2)
=> x (ln(2^(3)) - ln (12^(2))) = 2 ln(2)⇒x(ln(23)−ln(122))=2ln(2)
=> x (ln((2^(3)) / (12^(2)))) = 2 ln(2)⇒x(ln(23122))=2ln(2)
=> x (ln((8) / (144))) = 2 ln(2)⇒x(ln(8144))=2ln(2)
=> x (ln ((1) / (18))) = 2 ln(2)⇒x(ln(118))=2ln(2)
=> x (ln(1) - ln(18)) = 2 ln(2)⇒x(ln(1)−ln(18))=2ln(2)
=> x (0 - ln (18)) = 2 ln(2)⇒x(0−ln(18))=2ln(2)
=> - x ln(18) = 2 ln(2)⇒−xln(18)=2ln(2)
=> x ln(18) = - 2 ln(2)⇒xln(18)=−2ln(2)
=> x = - (2 ln(2)) / (ln(18))⇒x=−2ln(2)ln(18)
Therefore, the solution to the equation is x = - (2 ln(2)) / (ln(18))x=−2ln(2)ln(18).