How do you solve 8^x = 4 times 12^(2x)8x=4×122x?

1 Answer
Sep 16, 2016

x = - (2 ln(2)) / (ln(18))x=2ln(2)ln(18)

Explanation:

We have: 8^(x) = 4 times 12^(2 x)8x=4×122x

Let's apply the natural logarithm to both sides of the equation:

=> ln(8^(x)) = ln(4 times 12^(2 x))ln(8x)=ln(4×122x)

Using the laws of logarithms:

=> x ln(8) = ln(4) + 2 x ln(12)xln(8)=ln(4)+2xln(12)

Let's express some numbers in terms of 22:

=> x ln(2^(3)) = ln(2^(2)) + 2 x ln(12)xln(23)=ln(22)+2xln(12)

=> 3 x ln(2) = 2 ln(2) + 2 x ln(12)3xln(2)=2ln(2)+2xln(12)

=> 3 x ln(2) - 2 x ln(12) = 2 ln(2)3xln(2)2xln(12)=2ln(2)

=> x (3 ln (2) - 2 ln(12)) = 2 ln(2)x(3ln(2)2ln(12))=2ln(2)

=> x (ln(2^(3)) - ln (12^(2))) = 2 ln(2)x(ln(23)ln(122))=2ln(2)

=> x (ln((2^(3)) / (12^(2)))) = 2 ln(2)x(ln(23122))=2ln(2)

=> x (ln((8) / (144))) = 2 ln(2)x(ln(8144))=2ln(2)

=> x (ln ((1) / (18))) = 2 ln(2)x(ln(118))=2ln(2)

=> x (ln(1) - ln(18)) = 2 ln(2)x(ln(1)ln(18))=2ln(2)

=> x (0 - ln (18)) = 2 ln(2)x(0ln(18))=2ln(2)

=> - x ln(18) = 2 ln(2)xln(18)=2ln(2)

=> x ln(18) = - 2 ln(2)xln(18)=2ln(2)

=> x = - (2 ln(2)) / (ln(18))x=2ln(2)ln(18)

Therefore, the solution to the equation is x = - (2 ln(2)) / (ln(18))x=2ln(2)ln(18).