How do you solve Arc tan(1-x) - arc tanx = piArctan(1x)arctanx=π?

1 Answer
May 23, 2016

x=1/2x=12

Explanation:

As arctan(1-x)-arctanx=piarctan(1x)arctanx=π

arctan(1-x)=pi+arctanxarctan(1x)=π+arctanx

Now taking tangent of both sides

tan(arctan(1-x))=tan(pi+arctanx)=tan(arctanx)tan(arctan(1x))=tan(π+arctanx)=tan(arctanx)

or 1-x=x1x=x

or 2x=12x=1 or x=1/2x=12