How do you solve arcsin[(2a)/(1+a^2)] + arcsin[(2b)/(1+b^2)] = 2arctanx?

1 Answer
Jun 20, 2016

x = ( a + b )/( 1 - a b )

Explanation:

Use sin theta = (2 tan (theta/2))/(1+tan^2(theta/2) and

tan ( u + v )=( tan u + tan v )/( 1 - tan u tan v ).

Let a = tan (alpha/2) and b = tan (beta/2).

Then, the given equation becomes

alpha + beta = 2 (arc tan x).

So, x = tan ((alpha + beta)/2)

=(tan (alpha/2)+tan(beta/2))/( 1 - tan (alpha/2) tan (beta/2)

=(a+b)/(1-ab) .