arcsin(x)+arcsin(2x)=pi/3
Start by letting alpha=arcsin(x)" " and " "beta=arcsin(2x)
color(black)alpha and color(black)beta really just represent angles.
So that we have : alpha+beta=pi/3
=>sin(alpha)=x
cos(alpha)=sqrt(1-sin^2(alpha))=sqrt(1-x^2)
Similarly,
sin(beta)=2x
cos(beta)=sqrt(1-sin^2(beta))=sqrt(1-(2x)^2)=sqrt(1-4x^2)
color(white)
Next, consider
alpha+beta=pi/3
=>cos(alpha+beta)=cos(pi/3)
=>cos(alpha)cos(beta)-sin(alpha)sin(beta)=1/2
=>sqrt(1-x^2)*sqrt(1-4x^2)-(x)*(2x)=1/2
=>sqrt(1-4x^2-x^2-4x^4)=2x^2+1/2
=>[sqrt(1-4x^2-x^2-4x^4)]^2=[2x^2+1/2]^2
=>1-5x^2-4x^4=4x^4+2x^2+1/4
=>8x^4+7x^2-3/4=0
=>32x^4+28x^2-3=0
Now apply the quadratic formula in the variable x^2
=>x^2=(-28+-sqrt(784+384))/64=(-28+-sqrt(1168))/64=(-28+-sqrt(16*73))/64=(-7+-sqrt(73))/16
=>x=+-sqrt((-7+-sqrt(73))/16)
color(white)
Failed cases :
color(red)((1)" .. "x=+-sqrt((-7-sqrt(73))/16)
is to be rejected because the solution is complex inZZ
color(red)((2)" .. "x=-sqrt((-7+sqrt(73))/16)
is rejected because the solution is negative. Whereas pi/3 is positive.