How do you solve Cos(2*theta)+cos(theta)=0cos(2θ)+cos(θ)=0?

1 Answer
Nov 19, 2016

Use the identity cos^2beta = 1- 2sin^2betacos2β=12sin2β.

1 - 2sin^2theta + costheta = 012sin2θ+cosθ=0

1 - 2(1 - cos^2theta) + costheta = 012(1cos2θ)+cosθ=0

1 - 2 + 2cos^2theta + costheta = 012+2cos2θ+cosθ=0

2cos^2theta + costheta - 1 = 02cos2θ+cosθ1=0

2cos^2theta + 2costheta - costheta - 1 = 02cos2θ+2cosθcosθ1=0

2costheta(costheta + 1) - (costheta + 1) = 02cosθ(cosθ+1)(cosθ+1)=0

(2costheta - 1)(costheta + 1) = 0(2cosθ1)(cosθ+1)=0

theta = pi/3 + 2pin, (2pi)/3 + 2pin, pi + 2pinθ=π3+2πn,2π3+2πn,π+2πn.

Hopefully this helps!