Use the identity cos^2beta = 1- 2sin^2betacos2β=1−2sin2β.
1 - 2sin^2theta + costheta = 01−2sin2θ+cosθ=0
1 - 2(1 - cos^2theta) + costheta = 01−2(1−cos2θ)+cosθ=0
1 - 2 + 2cos^2theta + costheta = 01−2+2cos2θ+cosθ=0
2cos^2theta + costheta - 1 = 02cos2θ+cosθ−1=0
2cos^2theta + 2costheta - costheta - 1 = 02cos2θ+2cosθ−cosθ−1=0
2costheta(costheta + 1) - (costheta + 1) = 02cosθ(cosθ+1)−(cosθ+1)=0
(2costheta - 1)(costheta + 1) = 0(2cosθ−1)(cosθ+1)=0
theta = pi/3 + 2pin, (2pi)/3 + 2pin, pi + 2pinθ=π3+2πn,2π3+2πn,π+2πn.
Hopefully this helps!