How do you solve cos 2(x)- cos(x)- 1 = 0?

1 Answer
Jun 25, 2017

x = +- 141^@26 + k360^@

Explanation:

f(x) = cos 2x - cos x - 1 = 0
Replace cos 2x by (2cos^2 x - 1) -->
f(x) = 2cos^2 x - cos x - 2 = 0
Solve this quadratic equation for cos x -->
D = b^2 - 4ac = 1 + 16 = 17 --> d = +- sqrt17
There are 2 real roots:
cos x = -b/(2a) +- d/(2a) = 1/4 +- sqrt17/4 = (1 +- sqrt17)/4
a. cos x = (1 + 4.12)/4 = 5.12/4 = 1.28 (rejected because > 1)
b. cos x = (1 - 4.12)/4 = - 3.12/4 = - 0.78
Calculator and unit circle give -->
x = +- 141^@26 = k360^@
Check by calculator.
x = 141^@26 --> cos x = - 0.78 --> 2x = 282^@52 --> cos 2x = 0.22 -->
f(x) = 0.22 - (- 0.78) - 1 = 0. Proved.