How do you solve cos^2 x-sin^2 x=sin xcos2xsin2x=sinx; for -pi<x<=piπ<xπ?

1 Answer
Apr 19, 2016

S={-pi/2, pi/6,(5pi)/6}S={π2,π6,5π6}

Explanation:

Use Property: cos^2x+sin^2x=1cos2x+sin2x=1

1-sin^2x-sin^2x=sinx1sin2xsin2x=sinx

1-2sin^2x-sinx=012sin2xsinx=0

2sin^2x+sinx-1=02sin2x+sinx1=0

(2sinx-1)(sinx+1)=0(2sinx1)(sinx+1)=0

2sinx-1=0 or sinx+1=02sinx1=0orsinx+1=0

sinx=1/2 or sinx=-1sinx=12orsinx=1

x=sin^-1(1/2) or x=sin^-1 (-1)x=sin1(12)orx=sin1(1)

x=pi/6 +2pin, (5pi)/6+2pin or (3pi)/2 +2pinx=π6+2πn,5π6+2πnor3π2+2πn

n=-1, x=-(11pi)/6,-(7pi)/6,-pi/2n=1,x=11π6,7π6,π2

n=0, x=pi/6, (5pi)/6, (3pi)/2n=0,x=π6,5π6,3π2

S={-pi/2, pi/6,(5pi)/6}S={π2,π6,5π6}