Use Property: cos^2x+sin^2x=1cos2x+sin2x=1
1-sin^2x-sin^2x=sinx1−sin2x−sin2x=sinx
1-2sin^2x-sinx=01−2sin2x−sinx=0
2sin^2x+sinx-1=02sin2x+sinx−1=0
(2sinx-1)(sinx+1)=0(2sinx−1)(sinx+1)=0
2sinx-1=0 or sinx+1=02sinx−1=0orsinx+1=0
sinx=1/2 or sinx=-1sinx=12orsinx=−1
x=sin^-1(1/2) or x=sin^-1 (-1)x=sin−1(12)orx=sin−1(−1)
x=pi/6 +2pin, (5pi)/6+2pin or (3pi)/2 +2pinx=π6+2πn,5π6+2πnor3π2+2πn
n=-1, x=-(11pi)/6,-(7pi)/6,-pi/2n=−1,x=−11π6,−7π6,−π2
n=0, x=pi/6, (5pi)/6, (3pi)/2n=0,x=π6,5π6,3π2
S={-pi/2, pi/6,(5pi)/6}S={−π2,π6,5π6}