How do you solve cos^2 x-sin^2 x=sin xcos2xsin2x=sinx over the interval -pi<x<=piπ<xπ?

1 Answer
Apr 16, 2015

Write: cos^2(x)=1-sin^2(x)cos2(x)=1sin2(x) so that you get:

1-sin^2(x)-sin^2(x)-sin(x)=01sin2(x)sin2(x)sin(x)=0
-2sin^2(x)-sin(x)+1=02sin2(x)sin(x)+1=0

Set: sin(x)=tsin(x)=t and get:

-2t^2-t+1=02t2t+1=0
t_1=-1t1=1
t_2=1/2t2=12

but sin(x)=tsin(x)=t

And in your interval:

sin(x)=-1sin(x)=1 and x=-pi/2x=π2
sin(x)=1/2sin(x)=12 and x=pi/6 and x=5pi/6x=π6andx=5π6

![http://www.hyper-ad.com/tutoring/math/trig/The%20Sine%20Function.html](useruploads.socratic.org)

Hope it helps.