How do you solve cos 2 x = sin xcos2x=sinx over the interval 0 to 2pi?

1 Answer
Apr 16, 2016

pi/6, (5pi)/6 and (3pi)/2π6,5π6and3π2

Explanation:

Apply the trig identity: cos 2x = 1 - 2sin^2 x.cos2x=12sin2x. We get:
1 - 2sin^2 x = sin x12sin2x=sinx
- 2cos^2 x - sin x + 1 = 0.2cos2xsinx+1=0.
Solve this quadratic equation for sin x.
Since a - b + c = 0, use shortcut. The 2 real roots are; -1 and
-c/a = 1/2.ca=12.
Trig unit circle and trig table give -->
a. sin x = -1 --> x = (3pi)/2.x=3π2.
b. sin x = 1/2sinx=12 --> x = pi/6x=π6 and x = pi - pi/6 = (5pi)/6x=ππ6=5π6