How do you solve cos(ø)-2sin(2ø)-cos(3ø)=1-2sin(ø)-cos(2ø)?

ø is theta

The domain is from [0,2pi) not including 2pi

Hint: Get rid of cosines

1 Answer
Nov 24, 2016

phi={0,pi,pi/2,pi/3,(5pi)/3}

when 0<=phi<2pi

Explanation:

cosphi-2sin2phi-cos3phi=1-2sinphi-cos2phi

=>(cosphi-cos3phi)-2sin2phi=(1-cos2phi)-2sinphi

Using formula
color(red)(cosC-cosD=2sin((C+D)/2)sin((D-C)/2))

=>(2sin2phisinphi)-2sin2phi=2sin^2phi-2sinphi

=>2sin2phi(sinphi-1)-2sinphi(sinphi-1)=0

=>2(sinphi-1)(sin2phi-sinphi)=0

=>2(sinphi-1)(2sinphicosphi-sinphi)=0

=>2sinphi(sinphi-1)(2cosphi-1)=0

Equating each factor except 2 with zero we get

sinphi=0

=>phi=0 and pi

as 0<=phi<2pi

when sinphi-1=0

=>sinphi=1=sin(pi/2)
=>phi=pi/2

when 2cosphi-1=0

=>cosphi=1/2=cos(pi/3)=cos(2pi-pi/3)

=>phi=pi/3 or (5pi)/3