How do you solve cos^2x+2cos2x+1=0?

1 Answer
Aug 25, 2015

Solve f(x) = cos^2 x + 2cos 2x + 1 = 0

Ans: +- 63.43 and +- 116.57 deg

Explanation:

Replace in the equation cos 2x by (2cos^2 x - 1)
f(x) = cos^2 x + 4cos^2 x - 2 + 1 = 0
5cos^2 x - 1 =
cos^2 x = 1/5 --> cos x = +- 1/sqrt5 = +- 0.48

a. cos x = 0.48 --> x = +- 63.43 deg

b. x = - 0.48 --> x = +- 116.57
Check by calculator:
x = 63.43 deg --> cos^2 x = 0.20 ; 2cos 2x = - 1.20.
f(x) = 0.20 - 1.20 + 1 = 0. OK
x = 116.57 --> cos^2 x = 0.20 ; 2cos 2x = - 1.20.
f(x) = 0.20 - 1.20 + 1 = 0. OK