How do you solve cos 2x + 3 sinx - 2= 0cos2x+3sinx2=0?

1 Answer
Apr 18, 2016

S={pi/6 +2pin, (5pi)/6 +2pin, x=pi/2+2pin}S={π6+2πn,5π6+2πn,x=π2+2πn}

Explanation:

Use Double Argument Property:
cos2A=1-2sin^2Acos2A=12sin2A

1-2sin^2x+3sinx-2=012sin2x+3sinx2=0

2sin^2x-3sinx+1=02sin2x3sinx+1=0

(2sinx-1)(sinx-1)=0(2sinx1)(sinx1)=0

2sinx-1=0 or sinx-1=02sinx1=0orsinx1=0

sinx=1/2 or sinx =1sinx=12orsinx=1

x=sin^-1(1/2) or x=sin^-1 1x=sin1(12)orx=sin11

x=pi/6 +2pin, (5pi)/6 +2pin or x=pi/2+2pinx=π6+2πn,5π6+2πnorx=π2+2πn

S={pi/6 +2pin, (5pi)/6 +2pin, x=pi/2+2pin}S={π6+2πn,5π6+2πn,x=π2+2πn}