How do you solve cos^2x+6cosx+4=0cos2x+6cosx+4=0 in the interval [0,360]?

1 Answer
Oct 26, 2016

arccos(-3+sqrt(5))arccos(3+5)

Explanation:

Let Y=cos xY=cosx then
Y^2+6Y+4=0 and abs(Y)<=1Y2+6Y+4=0and|Y|1
Solving the equation
Y_(1,2)=-3+-sqrt(9-4)=-3+-sqrt(5)Y1,2=3±94=3±5
Only the solution with + satisfy abs(Y)>=1|Y|1

So

cos x = -3+sqrt(5)cosx=3+5

and

arccos(-3+sqrt(5))arccos(3+5)