How do you solve cos^4x-sin^4x=sinx?

1 Answer
Jul 24, 2016

(cos^2x - sin^2x)(cos^2x + sin^2x) = sinx

(cos^2x - sin^2x)(1) = sinx

cos^2x - sin^2x - sinx = 0

1 - sin^2x - sin^2x - sinx = 0

-2sin^2x - sinx + 1 = 0

-2sin^2x - 2sinx + sinx + 1 = 0

-2sinx(sinx + 1) + 1(sinx + 1) = 0

(-2sinx + 1)(sinx + 1) = 0

sinx = 1/2 and sinx = -1

x = pi/6, (5pi)/6 and (3pi)/2

Note that these solutions are only in the interval 0 < x< 2pi.

Hopefully this helps!