x =(2 + (1 + 4 k) pi)/pi, k = {0,pm 1,pm 2,..}x=2+(1+4k)ππ,k={0,±1,±2,..}
Explanation:
The equation cos(theta)=0cos(θ)=0 verifies for all theta = pi/2+2k piθ=π2+2kπ with k = {0,pm 1,pm 2,..}k={0,±1,±2,..}
Then pi/2x-1π2x−1 must be of the form pi/2+2k piπ2+2kπ. Equating pi/2x-1=pi/2+2k piπ2x−1=π2+2kπ Solving for xx we get x =(2 + (1 + 4 k) pi)/pi, k = {0,pm 1,pm 2,..}x=2+(1+4k)ππ,k={0,±1,±2,..}