How do you solve cos (x/2) - sinx = 0cos(x2)sinx=0 over the interval 0 to 2pi?

1 Answer
Feb 17, 2016

pi/6, pi/2, (5pi)/6, (3pi)/2π6,π2,5π6,3π2

Explanation:

Apply the trig identity: sin 2a = 2sin a.cos a
Replace sin x by 2sin (x/2).cos (x/2)2sin(x2).cos(x2) -->
cos (x/2) - 2sin (x/2).cos (x/2) = cos (x/2)(1 - 2sin (x/2) )= 0cos(x2)2sin(x2).cos(x2)=cos(x2)(12sin(x2))=0
On the trig unit circle,
a. cos x = 0 --> arc x = +- pi/2x=±π2.
x = pi/2 and x = (3pi)/2x=π2andx=3π2 (co-terminal with -pi/2π2)
b. sin x = 1/2sinx=12 --> arc x = pi/6x=π6 and x = (5pi)/6.x=5π6.