How do you solve cos x = cot x over the interval 0 to 2pi?

1 Answer

It is

cos x = cot x=>cosx=(cosx)/sinx=

First it should be (so the denominator can be defined)

enter image source here

Hence we have that

cos x = cot x=>cosx=(cosx)/sinx=>cosx*sinx=cosx=> cosx*(sinx-1)=0=> cosx=0 or sinx=1

From cosx=0=>x=pi/2 or x=3pi/2

From sinx=1=>x=pi/2

Hence the solutions are x=pi/2,x=3pi/2