How do you solve cos(x-pi/2)=sqrt3/2 for -pi<x<pi?

1 Answer
Apr 15, 2018

color(blue)(pi/3,(2pi)/3)

Explanation:

Identity:

color(red)bb(cos(A-B)=cosAcosB+sinAsinB)

cos(x-pi/2)=cos(x)cos(pi/2)+sin(x)sin(pi/2)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=cosx(0)+sinx(1)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=sinx

:.

sinx=sqrt(3)/2

x=arcsin(sinx)=arcsin(sqrt(3)/2)=>x=pi/3,(2pi)/3

color(blue)(pi/3,(2pi)/3)