How do you solve cos x = sin 2x, within the interval [0,2pi)?

1 Answer
Apr 9, 2016

pi/6 , pi/2 , (5pi)/6 , (3pi)/2

Explanation:

Using the color(blue)" double angle formula "

sin2A = 2sinAcosA

hence: cosx = 2sinxcosx

and 2sinxcosx - cosx = 0

take out the common factor cosx

cosx( 2sinx - 1 ) = 0

We now have : cosx = 0 or 2sinx - 1 = 0 → sinx = 1/2

solve : cosx = 0 rArr x = pi/2 , x = (3pi)/2

solve sinx = 1/2 rArr x = pi/6 , x = (5pi)/6

In the interval [ 0 , 2pi )

solutions are color(red)(|bar(ul(color(white)(a/a)color(black)(pi/6 ,pi/2 , (5pi)/6 , (3pi)/2)color(white)(a/a)|)))