How do you solve cos x = sin 2x, within the interval [0,2pi)?
1 Answer
Apr 9, 2016
Explanation:
Using the
color(blue)" double angle formula " sin2A = 2sinAcosA
hence: cosx = 2sinxcosx
and 2sinxcosx - cosx = 0
take out the common factor cosx
cosx( 2sinx - 1 ) = 0
We now have : cosx = 0 or 2sinx - 1 = 0 →
sinx = 1/2 solve : cosx = 0
rArr x = pi/2 , x = (3pi)/2 solve
sinx = 1/2 rArr x = pi/6 , x = (5pi)/6 In the interval
[ 0 , 2pi ) solutions are
color(red)(|bar(ul(color(white)(a/a)color(black)(pi/6 ,pi/2 , (5pi)/6 , (3pi)/2)color(white)(a/a)|)))