How do you solve cos2x+5=4sinxcos2x+5=4sinx for 0<=x<=3600x360?

1 Answer
Oct 25, 2016

pi/2π2

Explanation:

cos 2x + 5 = 4sin x
Use trig identity: cos 2x = 1 - 2sin^2 xcos2x=12sin2x
1 - 2sin^2 x + 5 = 4sin x12sin2x+5=4sinx
Bring the equation to standard form:
2sin^2 x + 4sin x - 6 = 02sin2x+4sinx6=0
Solve this quadratic equation for sin x.
Since a + b + c = 0, use shortcut. There are 2 real roots:
sin x = 1, and
sin x = c/a = -6/2 = - 3sinx=ca=62=3 (rejected as < -1)
Unit circle gives -->
sin x = 1 --> x = pi/2x=π2
Answers for (0, 2pi)(0,2π):
pi/2π2
Check.
x = pi/2x=π2 --> sin x = 1 --> cos 2x = cos pi = - 1 cos2x=cosπ=1
cos 2x + 5 = 4sin x --> - 1 + 5 = 4. OK