How do you solve cos2x + sinx = 0cos2x+sinx=0 over the interval 0 to 2pi?

1 Answer
Apr 5, 2016

Change cos(2x)cos(2x) to sin(x)sin(x) using the double angle formula and solve the resulting quadratic equation.

Explanation:

Double angle formula for cosine

cos(2x) -= 1 - 2 sin^2(x)cos(2x)12sin2(x)

Replace the cos(2x)cos(2x) in the equation.

cos(2x) + sin(x) = 1 - 2 sin^2(x) + sin(x)cos(2x)+sin(x)=12sin2(x)+sin(x)

= 0=0

Solve the quadratic by factorizing

-2 sin^2(x) + sin(x) + 1 = 02sin2(x)+sin(x)+1=0

(1 + 2sin(x))(1 - sin(x)) = 0(1+2sin(x))(1sin(x))=0

Therefore, either

sin(x) = 1sin(x)=1 or sin(x) = -1/2sin(x)=12

sin(x) = 1sin(x)=1 corresponds to x = sin^{-1}(1) = pi/2x=sin1(1)=π2.

For sin(x) = -1/2sin(x)=12, the basic angle is sin^{-1}(1/2) = pi/6sin1(12)=π6. Since sin(x)sin(x) is negative when xx is in the third or forth quadrant,

x = pi + pi/6 = (7pi)/6x=π+π6=7π6

or

x = 2pi - pi/6 = (13pi)/6x=2ππ6=13π6

Putting together all the answers, x = pi/2, (7pi)/6 or (13pi)/6x=π2,7π6or13π6.

Refer to the xx-intercepts of the graph y = cos(2x) + sin(x)y=cos(2x)+sin(x) below.
graph{cos(2x)+sin(x) [-10, 10, -5, 5]}