How do you solve cos2x + sinx = 0cos2x+sinx=0 over the interval 0 to 2pi?
1 Answer
Change
Explanation:
Double angle formula for cosine
cos(2x) -= 1 - 2 sin^2(x)cos(2x)≡1−2sin2(x)
Replace the
cos(2x) + sin(x) = 1 - 2 sin^2(x) + sin(x)cos(2x)+sin(x)=1−2sin2(x)+sin(x)
= 0=0
Solve the quadratic by factorizing
-2 sin^2(x) + sin(x) + 1 = 0−2sin2(x)+sin(x)+1=0
(1 + 2sin(x))(1 - sin(x)) = 0(1+2sin(x))(1−sin(x))=0
Therefore, either
sin(x) = 1sin(x)=1 orsin(x) = -1/2sin(x)=−12
For
x = pi + pi/6 = (7pi)/6x=π+π6=7π6 or
x = 2pi - pi/6 = (13pi)/6x=2π−π6=13π6
Putting together all the answers,
Refer to the
graph{cos(2x)+sin(x) [-10, 10, -5, 5]}