How do you solve cos3x=0cos3x=0 over the interval 0 to 2pi?

1 Answer
Sep 4, 2016

x = pi/2 and (3pi)/2x=π2and3π2

Explanation:

Apply the identity cos(3x) = cos(2x + x)cos(3x)=cos(2x+x):

cos(2x + x ) = 0cos(2x+x)=0

We can now expand using the sum formula cos(A + B)= cosAcosB - sinAsinBcos(A+B)=cosAcosBsinAsinB.

cos2xcosx + sin2xsinx = 0cos2xcosx+sin2xsinx=0

Use the following double angle identities to expand further:

cos2alpha = 1 - 2sin^2alphacos2α=12sin2α

sin2alpha = 2sinalphacosalphasin2α=2sinαcosα

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1 - 2sin^2x)cosx + 2sinxcosxsinx = 0(12sin2x)cosx+2sinxcosxsinx=0

cosx - 2sin^2xcosx + 2sin^2xcosx = 0cosx2sin2xcosx+2sin2xcosx=0

cosx = 0cosx=0

x = pi/2 and (3pi)/2x=π2and3π2

Hopefully this helps!