How do you solve cos3x=cos^3x-3sin^2xcosx?

1 Answer
Aug 16, 2016

It's true for all values of x. We are to prove it as an identity.

Explanation:

You can prove it using the formula for the sine and cosine of a sum.

Recall that

sin(a+b)=sin a cos b+cos a sin b (sine of a sum).

cos(a+b)=cos a cos b-sin a sin b (cosine of a sum).

First put in a=x, b=x, then

sin(2x)=sin(x+x)=sin x cos x+ cos x sin x=2 sin x cos x (double angle identity for sine).

cos(2x)=cos(x+x)=cos^2 x- sin^2 x (double angle identity for cosine).

Now, repeat but this time set a=2x, b=x. Use the double angle identities we obtained above for sin 2x and cos 2x. So

sin(3x)=sin(2x+x)=(2 sin x cos x)cos x+(cos^2 x-sin^2 x)sin x=3 sin x cos^2 x-sin^3 x (triple angle identity for sine).

And the identity ee originally set out to prove:

cos(3x)=cos(2x+x)=(cos^2 x-sin^2 x)cos x-(2 sin x cos x)sin x=cos^3 x-3 sin^2 x cos x (triple angle identity for cosine).