How do you solve cosx/(1+sinx)+(1+sinx)/cosx=-4 for 0<=x<=2pi?

1 Answer
Nov 26, 2016

x=(2pi)/3 or (4pi)/3

Explanation:

We have cosx/(1+sinx)+(1+sinx)/cosx=-4.

This can be written as

(cos^2x+(1+sinx)^2)/(cosx(1+sinx))=-4

or (cos^2x+1+sin^2x+2sinx)/(cosx(1+sinx))=-4

or (1+1+2sinx)/(cosx(1+sinx))=-4

or (2(1+sinx))/(cosx(1+sinx))=-4

or 2/cosx=-4

or cosx=-2/4=-1/2=cos(+-(2pi)/3)

i.e. x=2npi+-(2pi)/3, where n is an integer

and if 0<=x<=2pi,

x=(2pi)/3 or (4pi)/3