here,
cosx(3sinx-5)=0
or,3sinxcosx-5cosx=0
or,3*2sinxcosx=5*2cosx
or,3sin2x=10cosx
or,9sin^2 2x=100cos^2x[taking square on each sides]
or,9*2sin^2 2x=100*2cos^2x
or,18(1-cos^2 2x)=100(1+cos2x)
or,18-18cos^2 2x=100+100cos2x
or,18cos^2 2x+100cos2x+82=0
or, 18cos^2 2x+18cos2x+82cos2x+82=0
or,18cos2x(cos2x+1)+82(cos2x+1)=0
or,(cos2x+1)(18cos2x+82)=0
one solution is,
cos2x+1=0
or,cos2x=-1
or,2x=(2n+1)pi[where, ninZZ]
or,x=(2n+1)pi/2
another solution is,
18cos2x+82=0
or,cos2x=-82/18
but, cos2x!=-82/18 [as, cos2x cancel(>)1]
so, x=(2n+1)pi/2[where n in ZZ]