How do you solve cosx(3sinx - 5) = 0?

1 Answer
Feb 1, 2016

(2n+1)pi/2[where n in ZZ]

Explanation:

here,
cosx(3sinx-5)=0

or,3sinxcosx-5cosx=0

or,3*2sinxcosx=5*2cosx

or,3sin2x=10cosx

or,9sin^2 2x=100cos^2x[taking square on each sides]

or,9*2sin^2 2x=100*2cos^2x

or,18(1-cos^2 2x)=100(1+cos2x)

or,18-18cos^2 2x=100+100cos2x

or,18cos^2 2x+100cos2x+82=0

or, 18cos^2 2x+18cos2x+82cos2x+82=0

or,18cos2x(cos2x+1)+82(cos2x+1)=0

or,(cos2x+1)(18cos2x+82)=0

one solution is,

cos2x+1=0

or,cos2x=-1

or,2x=(2n+1)pi[where, ninZZ]

or,x=(2n+1)pi/2

another solution is,

18cos2x+82=0

or,cos2x=-82/18

but, cos2x!=-82/18 [as, cos2x cancel(>)1]

so, x=(2n+1)pi/2[where n in ZZ]