How do you solve cosx+sinxtanx=2cosx+sinxtanx=2?

1 Answer
May 25, 2015

tan(x) = sin(x)/cos(x)tan(x)=sin(x)cos(x)

So
cos(x) + sin(x)tan(x) = 2cos(x)+sin(x)tan(x)=2

rarr cos(x) + sin^2(x)/cos(x) = 2cos(x)+sin2(x)cos(x)=2

rarr (cos^2(x) + sin^2(x))/cos(x) = 2cos2(x)+sin2(x)cos(x)=2

rarr 1/cos(x) = 21cos(x)=2

rarr cos(x) = 1/2cos(x)=12

Based on one of the standard trigonometric triangles
x = +-60^@x=±60