How do you solve cosx tanx - 2 cos^2x = -1 on the interval [0,2pi]?

1 Answer
Jul 25, 2015

Solve: cos x.tan x - 2cos^2 x = - 1

Explanation:

cos x(sin x /cos x) = 2cos^2 x - 1
sin x = cos 2x (Condition cos x not zero, x not (pi)/2 and (3pi)/2)
sin x = 1 - 2sin^2 x. Call sin x = t. We get quadratic equation:

2t^2 + t - 1 = 0
(a - b + c) = 0 --> 2 real roots: t = -1 and t = -c/a = 1/2

a. t = sin x = - 1 --> x = (3pi)/2 (Rejected)

b. t = sin x = 1/2 --> x = (pi)/6 and x = (5pi)/6
Check.
x = (pi)/6 --> cos x = sqrt3/2 --> tan x = sqrt3/3 -->
cos^2 x = 3/4

(sqrt3/2)((sqrt3)/3) - 2(3/4) = 3/6 - 3/2 = -6/6 = - 1. OK