How do you solve cosxsinx=cosx in the interval 0<=x<=2pi?
2 Answers
Mar 12, 2018
Explanation:
"rearrange and equate to zero"
cosxsinx-cosx=0
"take out common factor "cosx
cosx(sinx-1)=0
"equate each factor to zero and solve for x"
cosx=0rArrx=pi/2,(3pi)/2
sinx-1=0rArrsinx=1rArrx=pi/2
"Put the solutions together"
rArrx=pi/2" or "x=(3pi)/2tox in[0,2pi]
Mar 12, 2018
Explanation:
Here,
Now,