How do you solve cosxsinx=cosx in the interval 0<=x<=2pi?

2 Answers
Mar 12, 2018

x=pi/2" or "x=(3pi)/2

Explanation:

"rearrange and equate to zero"

cosxsinx-cosx=0

"take out common factor "cosx

cosx(sinx-1)=0

"equate each factor to zero and solve for x"

cosx=0rArrx=pi/2,(3pi)/2

sinx-1=0rArrsinx=1rArrx=pi/2

"Put the solutions together"

rArrx=pi/2" or "x=(3pi)/2tox in[0,2pi]

Mar 12, 2018

x=pi/2,(3pi)/2.

Explanation:

Here, cosxsinx=cosx=>cosxsinx-cosx=0
=>cosx(sinx-1)=0=>cosx=0orsinx-1=0
cosx=0or sinx=1
color(red)(=>x=(2k+1)pi/2,kinZorx=(4k+1)pi/2,kinZ)
Now, x in[0,2pi]=>x=pi/2,(3pi)/2.