How do you solve cot^2 x +csc x = 1 cot2x+cscx=1 from [0,360]?

1 Answer
Jul 22, 2015

Solve: cot^2 x + csc x = 1

Ans: pi/2; (7pi)/6; and (11pi)/6π2;7π6;and11π6

Explanation:

cos^2 x/sin^2 x + 1/sin x = 1cos2xsin2x+1sinx=1

cos^2 x + sin x = sin^2 xcos2x+sinx=sin2x
(1 - sin^2 x) + sin x = sin^2 x

2sin^2 x - sin x - 1 = 0
Case (a + b + c = 0), the 2 real roots are: sin x = 1 and sin x = -1/2

a. sin x = 1 --> x = pi/2a.sinx=1x=π2

b. sin x = - 1/2 b.sinx=12--> x = (7pi)/6x=7π6 and x = (11pi)/6x=11π6

Within interval (0, 2pi), 3 answers: pi/2; (7pi)/6 and (11pi)/6.π2;7π6and11π6.

Check with x = (7pi)/6.x=7π6.
cot (7pi)/6 = sqrt3 --> cot^2 ((7pi)/6) = 3cot(7π)6=3cot2(7π6)=3.
csc ((7pi)/6) = 1/sin ((7pi)/6) = - 2csc(7π6)=1sin(7π6)=2
cot ((7pi)/6) - csc ((7pi)/6) = 3 - 2 = 1cot(7π6)csc(7π6)=32=1 Correct.

enter image source here