How do you solve cotx=tan(2x-3pi) in the interval [0,360]?

2 Answers
Sep 15, 2016

x={30^o,150^o,210^o,330^o}

Explanation:

cotx=tan(2x-3pi)=tan-(3pi-2x)=-tan(3pi-2x)=-(-tan2x)=tan2x

Hence 1/tanx=(2tanx)/(1-tan^2x) or

2tan^2x=1-tan^2x or

3tan^2x=1 or

tan^2x=1/3 and

tanx=+-1/sqrt3=+-tan(pi/6)=tan(+-pi/6)

Hence x=npi+-pi/6

and in interval [0^o,360^o]

x={30^o,150^o,210^o,330^o}

Nov 4, 2016

"Solution set "{30^@,90^@,150^@,210^@,270^@,330^@}

Explanation:

cotx=tan(2x-3pi)

=>tan(2x-3pi)=cotx

=>tan(-3pi+2x)=tan(pi/2-x)

=>tan(2x)=tan(pi/2-x)

=>2x=npi+pi/2-x," where n" in ZZ

=>3x=npi+pi/2," where n" in ZZ

=>x=1/3xxnpi+pi/6," where n" in ZZ

=>x=1/6(2n+1)pi" where n" in ZZ

To evaluate x in the interval [0.360]

For n = 0

=>x=1/6(2xx0+1)pi=180/6=30^@

For n =1

=>x=1/6(2xx1+1)pi=180/2=90^@

For n =2

=>x=1/6(2xx2+1)pi=(5xx180)/6=150^@

For n =3

=>x=1/6(2xx3+1)pi=(7xx180)/6=210^@

For n =4

=>x=1/6(2xx4+1)pi=(9xx180)/6=270^@

For n =5

=>x=1/6(2xx5+1)pi=(11xx180)/6=330^@