How do you solve csc((19pi)/4)=sqrt2csc(19π4)=2?

1 Answer
Mar 19, 2017

Trig table of special arcs and unit circle give:
sin ((19pi)/4) = sin ((3pi)/4 + 4pi) = sin ((3pi)/4) = sqrt2/2sin(19π4)=sin(3π4+4π)=sin(3π4)=22
Therefore:
csc ((18pi)/4) = 1/(sin ((3pi)/4)) = 2/sqrt2 = sqrt2csc(18π4)=1sin(3π4)=22=2. Proved.