How do you solve e^(2x)-6e^x+8=0?

1 Answer
Dec 10, 2015

Use e^(2x) = (e^x)^2 to see that this equation is quadratic in e^x.

Explanation:

e^(2x)-6e^x+8=0

(e^x)^2-6e^x+8=0

Factor without substituting

(e^x-4)(e^x - 2 ) = 0

So e^x-4=0 " or " e^x-2=0

e^x=4 " or " e^x =2

x=ln4 " or " x=ln2

Substitute, then factor

Let u = e^x, then we want

u^2-6u+8=0

(u-4)(u-2) = 0

u=4 " or " u=2 Recall u=e^x, so

e^x=4 " or " e^x =2

x=ln4 " or " x=ln2