How do you solve e^(4x)-3e^(2x)-18=0?

1 Answer
May 5, 2016

x=1/2ln6

Explanation:

To solve e^(4x)-3e^(2x)-18=0, let e^(2x)=u

Then the above equation becomes

u^2-3u-18=0 and splitting middle term we get

u^2-6u+3u-18=0

or u(u-6)+3(u-6)=0 or (u+3)(u-6)=0

substituting u=e^(2x), we get

(e^(2x)+3)(e^(2x)-6)=0

As e^(2x) is always positive

(e^(2x)+3)!=0 and hence dividing above by (e^(2x)+3),

(e^(2x)-6)=0

i.e. e^(2x)=6

or 2x=ln6 and hence x=1/2ln6